
CUHK STAT6050: Statistical Learning Theory Spring 2022

Lecture 7: Nonparametric regression in RKHS
kernel method, Representer theorem

Lecturer: Ben Dai

“There is Nothing More Practical Than A Good Theory.” — Kurt Lewin

1 Recall
Based on Lectures 1-6, we are able to compute the convergence rate and establish a probabilistic
bound for a general learning method/algorithm. For illustrate, we turn to investigate the asymp-
totics of the nonparameteric regression in Reproducing kernel Hilbert space (RKHS).

2 RKHS

2.1 Why RKHS?
Requirements. At least, we require pointwise convergence, that is,

‖ fn− f‖F → 0 =⇒ fn(x)→ f (x), for any x ∈X .

Theorem 2.1 (The Riesz Representation Theorem for Hilbert Spaces). Let H be a Hilbert space,
and L : H →R is a linear continuous functional on H . Then there exists some K ∈H such that
for every h ∈H , we have L(h) = 〈h,K〉H .

According to Riesz representation theorem, if L = δx is a linear continuous functional on H ,
then we have

f (x) = δx( f ) = 〈 f ,Kx〉H ,

which means that we can represent function evaluation as the inner production on Kx.

Definition 2.2 (RKHS). A Hilbert space H is said to be a Reproducing Kernel Hilbert Space
(RKHS) if δx is a linear continuous functional on H , for any x ∈X .

Theorem 2.3. Suppose H is a RKHS, then

‖hn−h‖H → 0 =⇒ hn(x)→ h(x), for any x ∈X .
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2.2 From kernel function to RKHS
The overall idea in this section is to construct a RKHS from a kernel function. Recall the construc-
tion in finite-dimension space: (i) basis; (ii) inner production among basis.

From Riesz representation theorem, {Kx : x ∈X } will be a good option as a basis function,
and their inner production is given as:

〈Kx′,Kx〉H = δx(Kx′) = Kx′(x).

Note that Kx′(x) : X ×X → R is a symmetric bivariate function (so-called kernel function).
Once we define a K(x,x′) = Kx′(x) = Kx(x′), then we define the basis Kx and the inner production
between two basis K(x,x′).
Step 1. Define a pre-RKHS by linear span of kernel functions.

To mimic the construction in finite-dimension case, we first construct a pre-RKHS H0 as a set
of functions:

f (x) =
n

∑
i=1

αiKxi =
n

∑
i=1

αiK(xi,x),

equipped with an inner production:

〈 f , f ′〉H0 =
n

∑
i=1

n

∑
j=1

αiα jK(xi,x j)

Step 2. Generate a RKHS by taking “closure” of the pre-RKHS.
Then, we create H as an “closure” of H :

H = H0 = H0
⋃{

limit points of all H0-Cauchy sequences
}
, f (x) =

∞

∑
i=1

αiK(xi,x) ∈H ,

equipped with the inner production:

〈 f , f ′〉H = lim
n→∞
〈 fn, f ′n〉H0

Then, we turn to verify H is indeed a RKHS, and find requirements for a valid kernel function
K(·, ·). Recall the definition of RKHS: (i) H equipped with 〈 f , f ′〉H is a Hilbert space; (ii) δx is
a continuous functional on H . One can find the formal proof in [Sejdinovic and Gretton, 2012].
Remark 2.4 (Positive-definite kernel). One quick observation is that a valid kernel function should
be symmetric and positive definite.

• From inner production: a kernel function should be symmetric.

K(x,x′) = 〈Kx,Kx′〉H = 〈Kx′,Kx〉H = K(x′,x)

• From norm: a kernel function should be positive definite.

0≤ ‖ f‖2
H = ‖

n

∑
i=1

αiK(xi,x)‖2
H =

n

∑
i=1

n

∑
j=1

αiα j〈Kxi,Kx j〉H =
n

∑
i=1

n

∑
j=1

αiα jK(xi,x j),

which holds for any f ∈H or for any n≥ 1, any (α1, · · · ,αn) ∈Rn, any (x1, · · · ,xn) ∈X n.
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2.3 Definitions and theorems
In this section, we give formal definitions and theorems used in Section 2.2.

Definition 2.5 (Reproducing kernel). Let H be a RKHS. A function K : X ×X → R is called a
reproducing kernel of H if it satisfies

• For any x ∈X , Kx = K(·,x) ∈H .

• (Reproducing property). For any x ∈X , and any h ∈H , 〈h,Kx〉H = h(x).

Definition 2.6 (Positive semi-definite (Mercer) Kernel). A symmetric function K : X ×X → R
is positive definite kernel, if for any n≥ 1, any (α1, · · · ,αn) ∈ Rn, any (x1, · · · ,xn) ∈X n,

n

∑
i=1

n

∑
j=1

αiα jK(xi,x j)≥ 0.

Next, we have Moore-Aronszajn theorem to guarantee the legality of the construction in Sec-
tion 2.2.

Theorem 2.7 (Moore-Aronszajn theorem). Let K : X ×X → R be positive semi-definite. Then
there is unique RKHS H with reproducing kernel K.

Finally, we summarize as:

“legal” kernel ⇐⇒ reproducing kernel ⇐⇒ positive semi-definite kernel ⇐⇒ RKHS.

2.4 Examples
• Linear kernel.

K(x,x′) = xᵀx′

• Gaussian kernel.

K(x,x′) = exp
(
−
‖x−x′‖2

2
σ2

)
• γ-degree polynomial kernel.

K(x,x′) = (xᵀx′+ c)γ

Remark 2.8. What’s the difference among different kernels? Theoretically, it effects both estima-
tion/approximation errors, see discussion in Section 4. Practically, it highly related to the topic
multiple kernel learning, see [Gönen and Alpaydın, 2011] and references therein.
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3 Regression in RKHS
We denote vector of features as X ∈ Rd , a scalar outcome as Y ∈ R. Suppose Z = (X,Y ) satisfy a
nonparametric regression model:

Y = f ∗(X)+ ε,

where ε is a random noise with E(ε) = 0 and ε ⊥ X, and f ∗ is the true conditional mean function
with ‖ f ∗‖∞ < ∞. Our goal is to find a decision function f minimizing the mean squared loss:

R( f ) = E
(

l
(
Y, f (X)

))
= E

((
Y − f (X)

)2
)
.

Let’s summarize the quantities of interests.

• Bayes rule. f ∗(x) = E(Y |X = x) is the global minimizer of R( f ).

• Excess risk.

E ( f ) = R( f )−R( f ∗) = E
((

f (X)− f ∗(X)
)2
)
=
∥∥ f − f ∗

∥∥2
L2(PX)

• R-ERM. Given random samples (Xi,Yi)i=1,··· ,n, and a RKHS HK associated with a kernel
K,

f̂n = argmin
f∈HK

1
n

n

∑
i=1

(
Yi− f (Xi)

)2
+λn‖ f‖2

HK

• Asymptotics. Finally, we aim to investigate the asymptotics of E ( f̂n).

First, we consider the empirical optimization of ERM on RKHS. Indeed, this can be challeng-
ing, since f ∈HK , and the RKHS HK is an infinity-dimensional function class. Fortunately, we
have the Representer Theorem, which implies that ERM reduces to a finite dimensional optimiza-
tion problem.

Theorem 3.1 (Representer Theorem [Kimeldorf and Wahba, 1970, Wahba, 1990]). Let K(·, ·) is a
kernel function and HK be its associated RKHS. Given a training sample (Xi,Yi)i=1,··· ,n, consider
the R-ERM:

f̂n = argmin
f∈HK

Ln
(
Y1, · · · ,Yn, f (X1), · · · , f (Xn)

)
+g(‖ f‖2

HK
). (1)

Suppose g(·) is an increasing function Ln depends on f only through f (X1), · · · , f (Xn). Then,
every minimizer of (1) has form:

f̂n(x) =
n

∑
i=1

α̂iK(Xi,x),

for some (α̂i)i=1,··· ,n ∈ Rn.
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Remark 3.2. I recommend readers to check the summary1 by Grace Wahba and Yuedong Wang.
Some quotas:

• The significance of the representer theorem is that the solution in an infinite dimensional
space falls in a finite dimensional space. This property makes it possible to compute esti-
mates of general regularization problems in infinite dimensional spaces.

According to the Representer Theorem, the R-ERM can be reduced to:

min
ααα

1
n

n

∑
i=1

(
Yi−

n

∑
j=1

α jK(X j,Xi)
)2

+λn‖
n

∑
j=1

α jK(X j, ·)‖2
HK

= min
ααα

1
n

n

∑
i=1

(
Yi−ααα

ᵀKi
)2

+λnααα
ᵀKααα,

where ααα = (α1, · · · ,αn)
ᵀ and K = (Ki j)n×n is a kernel matrix with Ki j = K(Xi,X j). Note that the

optimization in the right-hand side is reduced to a linear regression with a structured penalization,
and the solution is given as:

α̂αα =
(
K+λnI

)−1Y1:n, f̂n(x) =
n

∑
j=1

α̂ jK(X j,x).

4 A loose excess risk upper bound
Next, we turn to bound the excess risk of RKHS regression. For simplicity, we assume |εi| ≤U ,
and we have f̂n(Xi) ≤U , unless we can truncate it by U to further minimize R-ERM. Note that
f̂n ∈HK is a minimizer of:

1
n

n

∑
i=1

((
f (Xi)− f ∗(Xi)

)2
+2εi

(
f (Xi)− f ∗(Xi)

))
+λn‖ f‖2

HK
:= R̂n( f )+λn‖ f‖2

HK
.

Then, let Hn = { f ∈H : ‖ f‖HK ≤ cλ
−1/2
n },

E ( f̂n) = R( f̂n)−R( f ∗)≤ 2 sup
f∈Hn

|R̂n( f )−R( f )|+Approx(λn)

4.1 Estimation error in RKHS
Based on Corollary 3.1 in Lecture 6, it suffices to bound Radn(l • f ) and Approx(λn). We treat
them separately. Note that

Radn(l • f ) =
∥∥∥1

n

n

∑
i=1

ρi

((
f (Xi)− f ∗(Xi)

)2
+2εi

(
f (Xi)− f ∗(Xi)

))∥∥∥
Hn

=
∥∥∥1

n

n

∑
i=1

ρi
(

f (Xi)− f ∗(Xi)
)2
∥∥∥

Hn
+2
∥∥∥1

n

n

∑
i=1

ρiεi( f (Xi)− f ∗(Xi))
∥∥∥

Hn

≤ 4URadn( f ).

It suffices to bound the Rademacher complexity of HK , we have the following lemma.
1http://pages.stat.wisc.edu/~wahba/ftp1/wahba.wang.2019submit.pdf
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Lemma 4.1. Suppose K is a uniformly bounded kernel with supx∈X
√

K(x,x) ≤ K0 < ∞, HK is
its corresponding RKHS, and HK(r) = { f ∈HK : ‖ f‖HK ≤ r} is a HK-ball with a radius r. Then,

Eρ‖Radn( f )‖HK(r) ≤ rK0

√
1
n
.

Therefore, Radn(l • f )≤ cUK0(nλn)
−1/2.

4.2 Approximation error in RKHS
Then, we turn to bound Approx(λn). We present Proposition 8.5 in [Cucker and Zhou, 2007] to
illustrate the approximation error for RKHS. Recall Approx(λn) in RKHS regression:

Approx(λn) = inf
f∈Hn

R( f )−R( f ∗)+λn‖ f‖2
Hn

,

provided that R( f ) = E(Y − f (X))2.

Theorem 4.2 ([Cucker and Zhou, 2007]). Let X ⊂ Rd be a compact domain, and K be a repro-
ducing kernel. Suppose there exists 0 < s≤ 1, such that f ∗ ∈ Range(Ls/2

K ), then

Approx(λn)≤ A0λ
s
n,

where A0 = E
(
L−s/2

K f ∗
)
.

4.3 Hyperparameter tuning
Taken together, if we further assume that X is a compact domain almost surely, and

εn ≥ A0λ
s
n + cUK0(nλn)

−1/2 ≥ Approx(λn)+8E‖Radn(l • f )‖Hn ,

then

P
(
‖ f − f ∗‖2

L2(Px)
≥ εn

)
≤ exp

(
− nε2

n

8
(
U2 +(1/2+U/6)εn

)).
Note that the developed inequality is valid for any λn, thus we can tune λn to improve the conver-
gence rate:

ε
∗
n = inf

λn
A0λ

s
n + cUK0(nλn)

−1/2 = O(n−s/(1+2s)),

obtained by λn = O(n−1/(1+2s)). Therefore, the convergence rate is given as:

E ( f̂n) = OP(ε
∗
n ) = OP(n−

s
1+2s ).

Remark 4.3. Note that the result is a simple but loose bound for the excess risk, we can improve
the convergence rate from n−s/(1+2s) to n−2s/(1+2s) in the next few lectures. Yet, we are looking
for where there is potential for improvement...
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