CUHK STAT6050: Statistical Learning Theory Spring 2022

Lecture 7: Nonparametric regression in RKHS
kernel method, Representer theorem

Lecturer: Ben Dai

“There is Nothing More Practical Than A Good Theory.” — Kurt Lewin

1 Recall

Based on Lectures 1-6, we are able to compute the convergence rate and establish a probabilistic
bound for a general learning method/algorithm. For illustrate, we turn to investigate the asymp-
totics of the nonparameteric regression in Reproducing kernel Hilbert space (RKHS).

2 RKHS

2.1 Why RKHS?

Requirements. At least, we require pointwise convergence, that is,
lfn=fllz =0 = fulx)— f(x), foranyx € 2.

Theorem 2.1 (The Riesz Representation Theorem for Hilbert Spaces). Let 57 be a Hilbert space,
and L : 7 — R is a linear continuous functional on 7. Then there exists some K € 7 such that
for every h € 7€, we have L(h) = (h,K) .

According to Riesz representation theorem, if L = J; is a linear continuous functional on .77,
then we have

f(x) =6(f) = (f, Kx) e

which means that we can represent function evaluation as the inner production on Ky.

Definition 2.2 (RKHS). A Hilbert space .7 is said to be a Reproducing Kernel Hilbert Space
(RKHS) if 0 is a linear continuous functional on 7, for any x € 2.

Theorem 2.3. Suppose 7€ is a RKHS, then

\hn—h|lrp =0 = hy(x) = h(x), foranyx e Z .



2.2 From kernel function to RKHS

The overall idea in this section is to construct a RKHS from a kernel function. Recall the construc-
tion in finite-dimension space: (1) basis; (i1) inner production among basis.

From Riesz representation theorem, {Kyx : x € 2"} will be a good option as a basis function,
and their inner production is given as:

(Kx', Kx) o = Ox(Ky) = Ky (X).

Note that Ky (x) : 2" x 2 — R is a symmetric bivariate function (so-called kernel function).
Once we define a K(x,x') = Ky (x) = Kx(X'), then we define the basis Ky and the inner production
between two basis K(x,x').
Step 1. Define a pre-RKHS by linear span of kernel functions.
To mimic the construction in finite-dimension case, we first construct a pre-RKHS 77 as a set
of functions: .
= L ok

||
M:

oK (x;,x),

~.

equipped with an inner production:
K(x,x;)

n-L L

Step 2. Generate a RKHS by taking “closure” of the pre-RKHS.
Then, we create .77 as an “closure” of 77

HM:

H = ) = I U {limit points of all 7)-Cauchy sequences}, f(x)= Z oK (x;,x) € A,
i=1

equipped with the inner production:

Then, we turn to verify .77 is indeed a RKHS, and find requirements for a valid kernel function
K(-,-). Recall the definition of RKHS: (i) % equipped with (f, f') ,» is a Hilbert space; (ii) &, is
a continuous functional on .7#°. One can find the formal proof in [ ].

Remark 2.4 (Positive-definite kernel). One quick observation is that a valid kernel function should
be symmetric and positive definite.

* From inner production: a kernel function should be symmetric.

K(x,X') = (Kx,Ky) v = (Ky,Kx) v = K(X',X)

* From norm: a kernel function should be positive definite.

n non non
2 2
0< ||f”yf = || ZaiK(Xi:X)H%" = Z Z o; 0 KX,:KXJ Z Z OC] Xl7Xj)
i=1 i=1 j=1

i=1j=1

which holds for any f € 5 or for any n > 1, any (o, -+, o) € R", any (x1,---,X,) € 27
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2.3 Definitions and theorems

In this section, we give formal definitions and theorems used in Section 2.2.

Definition 2.5 (Reproducing kernel). Let .5# be a RKHS. A function K : 2" x 2 — R is called a
reproducing kernel of 77 if it satisfies

e Foranyx € 27, Kx = K(-,x) € .
* (Reproducing property). For any x € 2", and any h € 7, (h,Kx) » = h(X).

Definition 2.6 (Positive semi-definite (Mercer) Kernel). A symmetric function K : 2" x 2" — R
is positive definite kernel, if for any n > 1, any (o4, -+, ;) € R", any (xq,--,X,) € 2",

n n
Z Z OCi(XjK(X,',Xj) > 0.
i=1j=1
Next, we have Moore-Aronszajn theorem to guarantee the legality of the construction in Sec-

tion 2.2.

Theorem 2.7 (Moore-Aronszajn theorem). Let K : & x 2 — R be positive semi-definite. Then
there is unique RKHS 77 with reproducing kernel K.

Finally, we summarize as:

“legal” kernel <= reproducing kernel <= positive semi-definite kernel <= RKHS.

2.4 Examples

¢ Linear kernel.
K(x,x') =xTx'

¢ Gaussian kernel. o
[x —x ||2)

K(x,x')=exp(— =2

¢ y-degree polynomial kernel.
K(x,x') = (x7x'+¢)”

Remark 2.8. What'’s the difference among different kernels? Theoretically, it effects both estima-
tion/approximation errors, see discussion in Section 4. Practically, it highly related to the topic
multiple kernel learning, see [ ] and references therein.



3 Regression in RKHS

We denote vector of features as X € R?, a scalar outcome as ¥ € R. Suppose Z = (X,Y) satisfy a
nonparametric regression model:
Y =f(X)+e¢,

where € is a random noise with E(¢) =0 and € | X, and f* is the true conditional mean function
with || f*|le < eo. Our goal is to find a decision function f minimizing the mean squared loss:

2
R(F) =E(1(Y.£(X) ) =E((¥ - £(X))?)
Let’s summarize the quantities of interests.
* Bayes rule. /*(x) = E(Y|X = x) is the global minimizer of R(f).

* Excess risk.
(1) =R =R =E((1) = (X)) = | = [y

* R-ERM. Given random samples (X;,Y;)i—1.... », and a RKHS %% associated with a kernel
K,

—~ 1 & 2
fn = argmin — Z (Yi —f(Xi)) +/ln||f||2yﬁ<
fetx iz

* Asymptotics. Finally, we aim to investigate the asymptotics of & (fn)

First, we consider the empirical optimization of ERM on RKHS. Indeed, this can be challeng-
ing, since f € ¢, and the RKHS J#% is an infinity-dimensional function class. Fortunately, we
have the Representer Theorem, which implies that ERM reduces to a finite dimensional optimiza-
tion problem.

Theorem 3.1 (Representer Theorem [ , 1. LetK(-,-) isa
kernel function and ¢ be its associated RKHS. Given a training sample (X;,Y;)i—1.... », consider
the R-ERM:

fo=argmin Z, (Y1, Yo, f(X0),--, f(Xn)) +&(11f 1 24.)- (1)
fertx

Suppose g(+) is an increasing function £, depends on f only through f(X1),---,f(X,). Then,
every minimizer of (1) has form:

~

fn(X) = i &,-K(X,-,x)7

i=1

for some (0;)i=1.... » € R".



Remark 3.2. 1 recommend readers to check the summary! by Grace Wahba and Yuedong Wang.
Some quotas:

» The significance of the representer theorem is that the solution in an infinite dimensional
space falls in a finite dimensional space. This property makes it possible to compute esti-
mates of general regularization problems in infinite dimensional spaces.

According to the Representer Theorem, the R-ERM can be reduced to:

N n
ngn;Z(Yi—];ajK(Xj,X +7L||ZOCJ X, ||ij—m1n Z (Yi— aTK) + A, a"Ke,

where & = (@, , ;)T and K = (Kij)nxn is a kernel matrix with K;; = K(X;,X;). Note that the
optimization in the right-hand side is reduced to a linear regression with a structured penalization,
and the solution is given as:

a=K+41) Y, fHx=Y &KX;x).

J=1

4 A loose excess risk upper bound

Next, we turn to bound the excess risk of RKHS regression. For simplicity, we assume |g;| < U,
and we have f,(X;) < U, unless we can truncate it by U to further minimize R-ERM. Note that
fn € F% is a minimizer of:

%i((f(xo—f*<xi>)2+zei(f<x,->—f( D))+ all 1B == RalF) + 2l £

Then, let 77, = {f € || fllg < cAn 1/2}

é'a(fn) = R(fn) _R(f ) < 2;:} |I/€n(f) —R(f)|+ Approx(4,)

4.1 Estimation error in RKHS

Based on Corollary 3.1 in Lecture 6, it suffices to bound Rad, (! e f) and Approx(4,). We treat
them separately. Note that

S

Rad, (1) = | 3 0 (%) = (%) 28(5%) - 7 (%)) |

= Hl ipi(f(Xi) _f*(Xi))zH. +2Hl iPi&'(f(Xi) —f*(Xi))H
ni= I n:3

< 4URad,(f).

Hn

It suffices to bound the Rademacher complexity of .7k, we have the following lemma.

1http://pages.stat.wisc.edu/~wahba/ftpl/wahba.wang.2Ol9submit.pdf
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http://pages.stat.wisc.edu/~wahba/ftp1/wahba.wang.2019submit.pdf

Lemma 4.1. Suppose K is a uniformly bounded kernel with supy. 9 \/K(X,X) < Ko < oo, Hx is
its corresponding RKHS, and 5k (r) = {f € Hx : || f||a < r} is a H#x-ball with a radius r. Then,

1
Ep[|Rad,(f)l] s (r) < VKO\[;

Therefore, Rad,, (I f) < cUKy(nA,) /2.

4.2 Approximation error in RKHS

Then, we turn to bound Approx(A,). We present Proposition 8.5 in [ ] to
illustrate the approximation error for RKHS. Recall Approx(4,) in RKHS regression:

Approx(h,) = inf R(f)=R(f*) + Al /I3

provided that R(f) = E(Y — f(X))?.

Theorem 4.2 (| D. Let Z C R4 be a compact domain, and K be a repro-
ducing kernel. Suppose there exists 0 < s < 1, such that f* € Range(L;(/z), then

Approx(4,) < ApA;,
where Ay = é"(LI;S/zf*).
4.3 Hyperparameter tuning
Taken together, if we further assume that .2~ is a compact domain almost surely, and
& > AoAS + UKo (ny) /> > Approx(2,) + 8E|[Rad, (I e f)|| 1z,
then

ne?

8(U2+ (1/2n+ U/6)sn)>'

P(If = oy > &) <exp( -

Note that the developed inequality is valid for any A, thus we can tune A, to improve the conver-
gence rate:
&, = i){lf AoA, +cUKo(n7Ln)_1/2 = 0(,1—5/(1+2S))’

obtained by A, = O(n~'/(1+25)) Therefore, the convergence rate is given as:

&(fa) = Op(e;) = Op(n"T7%).

Remark 4.3. Note that the result is a simple but loose bound for the excess risk, we can improve
the convergence rate from n—/(1425) to n=25/(1425) in the next few lectures. Yet, we are looking
for where there is potential for improvement...
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